
SQL Performance for a Big Data
22 Billion row data warehouse

Session: F19

Friday May 8, 2015 8:00 – 9:00 | Platform: z/OS

Dave Beulke – dave @ d a v e b e u l k e.com

Dave Beulke & Associates

D a v e @ d a v e b e u l k e . c o m
Member of the inaugural IBM DB2 Information Champions
One of 45 IBM DB2 Gold Consultant Worldwide
President of DAMA-NCR, Past President of International DB2 Users Group - IDUG
Best speaker at CMG conference & former TDWI instructor

Former Co-Author of certification tests
DB2 DBA Certification tests
IBM Business Intelligence certification test

Former Columnist for IBM Data Management Magazine

Consulting
CPU Demand Reduction Guaranteed!
DB2 Performance Review
DW & Database Design Review
Security Audit & Compliance
DB2 11 Migration Assistance
DB2 10 Performance IBM White Paper & Redbook

Extensive experience in Big Data systems, DW design and performance
Working with DB2 on z/OS since V1.2
Working with DB2 on LUW since OS/2 Extended Edition
Designed/implemented first data warehouse in 1988 for E.F. Hutton
Working with Java for Syspedia since 2001 – Syspedia - Find, understand and integrate
your data faster!

Teaching Educational Seminars
DB2 Version 11 Transition
DB2 Performance for Java Developers
Data Warehousing Designs for Performance
How to Do a Performance Review
Data Studio and pureQuery

Weekly Performance Tips:
www.DaveBeulke.com

3

3
DB2 Performance Blog at www.davebeulke.com

Big Data Era bends the SQL Rules

• AGENDA

• The bigger the database the more attention needed to:
• Standard SQL Rules (30+)

• Database Design

• Database Conditions

• Database Indexes

• DB2 SQL being used

99
DB2 Performance Blog at www.davebeulke.com

Standard SQL Tips
1. Only SELECT the columns needed because it optimizes the

I/O between DB2 and your program.

2. Only SELECT rows needed for the process or transaction
and use
FETCH FIRST x ROWS ONLY whenever possible.

3. Code WHERE clauses with indexed columns that have
unique or good indexes.

4. Reference only tables that are absolutely necessary for
getting the data.

5. Code as many WHERE column clauses as possible because
the DB2 engine filters data faster than any application
code.

5DB2 Performance Blog at www.davebeulke.com

Standard SQL Tips
6. Prioritize the WHERE column clauses to maximize their effectiveness. First code

the WHERE column clauses that reference indexed keys, than the WHERE column
clauses that limit the most data, than WHERE clauses on all columns that can filter the
data further.

7. Code SQL JOINs instead of singular SQL access whenever possible. A single

SQL JOIN is always faster than two SQL statements within an application program
comparing and filtering the result set data.

8. Code SQL tables JOINs when there is a common indexed column or columns
shared by both or all of the JOINed tables. If a common column is not indexed talk to

a DBA and make a new index if possible.

9. When coding JOINs make sure to code the most restrictive JOIN table first
and provide as many indexed and restrictive WHERE clauses as possible to limit the
amount of data that needs to be JOINed to the second or subsequent tables.

10.Use DB2 OLAP DB2 functions to optimize your DB2 SQL answer result sets. Using

these SQL DB2 OLAP functions is usually much faster than application code summing,
totaling and calculations over your data.

6DB2 Performance Blog at www.davebeulke.com

Standard SQL Tips
11. Leverage DB2 functions appropriately. Analyze the SQL to determine the need for the

various DB2 functions. Report writers generate SQL with multiple, duplicate or
unnecessary DB2 functions. AVG, SUM etc..

12. Examine the data columns and tables SELECTed in the SQL. Many of these new big data
report writers have nice GUI interfaces that allow the users to point and click on anything.
Dup of #1?

13. Verify the DB2 table joins for improving your DB2 SQL performance. evaluate table
indexes’ uniqueness, cardinality, relationship to the table partitioning or column
frequencies.

14. Eliminate data translations. Sometime the report writer generated SQL uses many CAST,
SUBSTR, CASE statements, constants, or formulas in the SQL. The generated SQL may also
have math formulas compared to DB2 table columns within the SQL. Check the ones that
are not index-able and clean them for performance.

15. Understand the ORDER of JOIN and Access. By making sure the JOIN of the smaller table
drives the data SELECTed from the big data DB2 table, your DB2 SQL should
eliminate/minimize as much data as possible in the first JOIN. Also minimize SQL such as
ORDER BY, GROUP BY, DISTINCT, UNION, or JOIN predicates that do not leverage the
clustering order of the table, because they will require a DB2 sort.

7DB2 Performance Blog at www.davebeulke.com

Standard SQL Tips

16.Understand all SQL phrases that results in a SORT. DB2 SQL workloads Sorts
are one of the most expensive operations especially with Big Data. i.e. -
Distinct, Order by, UNION etc.

17.Verify Scalar function is index-able. In DB2 11 many scalar function became
index-able not all of them like DATE(timestamp-column).

18.Remove all math from the WHERE Clause if possible. Math in WHERE
clauses sometime disrupts the data type comparisons and precision. Pre-
calculate math before SQL statement and always verify index-ability of any
that are questionable.

19.Understand the number of trips to the database. Use multi-row SELECT and
INSERT operations whenever possible to access or to the add the database.

20.Minimize and optimize any WHERE ‘OR’ clauses. Make sure that the ‘OR’
does not make the entire WHERE clause become a table scan. Optimize all
‘OR’ phases and turn them into a correlated sub-query if possible.

8DB2 Performance Blog at www.davebeulke.com

Standard SQL Tips
21.SELECT from INSERT, UPDATE whenever possible. Avoids multiple trips to

the database and is great for identity, sequence and any other database
column keys

22.Use MERGE to reference the database and make sure the data is there and
updated. Avoid complex program logic to perform the data checking and
then update.

23.Create indexes on all WHERE clause expressions that are not already index-
able. Companies have unique situations and data types. Create Indexes on
Expressions that are used in your daily SQL processing.

24.Use Common Table Expression (CTEs) whenever possible because they can
get the data so that the result set can be used repeatedly and efficiently.

25.Use DB2 TEMP tables for all data that is referenced more than three times
in the flow of daily business. It is more efficient to get the TEMP result set
working instead of repeated redundant data access. Remember they can
also be set up as NOT LOGGED.

9DB2 Performance Blog at www.davebeulke.com

Standard SQL Tips
26.Use DB2 Virtual Indexes to model your potential Indexes Model INCLUDE

Column, Index on Expression, Uniqueness and other new index definition
possibilities.

27.Use Optimizer Filter Factor Hints to give full information. JOIN
Skew/Correlation, accurate statistics, complex predicates and host variable
and special register information.

28.Analyze the SYSSTATFEEDBACK table contents to understand your SQL
Access Path results better. Can be used to generate better RUNSTATS input.

29.Leverage EXCLUDE NULL when creating indexes to reduce index size. Verify
that the NULL-ability is not within the application WHERE clauses.

30.Overriding predicate selectivity with the DSN_PREDICAT_% tables.
Populate these tables with the details of the selectivity of the tables’
uniqueness to improve optimizer knowledge for better access paths and
improved performance.

10DB2 Performance Blog at www.davebeulke.com

Big Data Database Design
• Big data physical objects I/O bound operations

• Partition the database tables to minimize the data required for daily SQL

• Use the thousands of partitions available for a design

• How many parallel processes are your applications running
today?

• Separate old data from new data
• Current Year, Quarter, Week, Day

• Temporal tables with the HISTORY tables

• Complicates the SQL also can make a lot of data quickly

• Materialized Query Table – YTD sales figures

• Or composite tables to separate via TIME axis Year, Quarter, Week, Day

• Or composite tables to separate via Sales territory axis Country, Region,
State, City, Zip code

DB2 Performance Blog at www.davebeulke.com

11

C

L

A

I

M

S

_

2

0

1

5

C

L

A

I

M

S

_

2

0

1

4

C

L

A

I

M

S

_

2

0

1

4

C

L

A

I

M

S

_

2

0

1

2

C

L

A

I

M

S

_

2

0

1

1

C

L

A

I

M

S

_

2

0

1

0

C

L

A

I

M

S

_

2

0

0

9

C

L

A

I

M

S

_

2

0

0

8

C

L

A

I

M

S

_

2

0

0

7

C

L

A

I

M

S

_

2

0

0

6

Database Design for parallelism
• Partitioning to leverage ??? more concurrent processes

• Same partitioning limit keys across multiple table

spaces

• Via Customer number across those related tables

• Via Product SKU number across all the product

related data

• Partitioning design leverages time properly

• The active partitions are only a segment of the entire table

• Concentrates the I/O into the right sized portion of the database

• Current history available - Ancient history is not in database/archived easily

• Indexes (NPIs or DPSIs) are appropriately designed

• Partitioned for parallelism and recovery

• Table clustered for SQL efficiencies

G

zIIP zIIP zIIP zIIP

G

G

G

G

G

G

G

G

zIIP

zIIP

zIIP

12DB2 Performance Blog at www.davebeulke.com

Big Data Flow
• Design encourages concurrent loads and queries

• Either through bulk, trickle or custom loads

• Automatically aggregates data within hierarchy

• Massively parallel processing of all workload aspects

Fact-Week

MQT

Fact-Daily

MQT

Fact-Month

MQT

Fact-Yearly

MQT

Fact-1Q

MQT

Leverage daily processing aggregates

13DB2 Performance Blog at www.davebeulke.com

• Daily sales figures feed MQTs
• Create additive MQTs

• MQTs created for all analysis comparison points

• MQTs can be built from other MQTs
• Define Quarterly Sales from Monthly Sales

• Combine MQTs through Views
• Views over region, territory, store id etc…

Materialized Query Table-MQT Example

Daily
Sales

Weekly
Totals

Monthly
Totals

Quarterly
Totals

Y-T-D
Totals

OLTP

Detail
Trans

from today

View

14DB2 Performance Blog at www.davebeulke.com

• 5B rows per year–10 per 4k page= ½B pages

• MQT aggregates save large amounts of everything

• Create aggregates for every possibility

• “On Demand” information

• Sales by department

• Sales by zip code

• Sales by time period – day/week/month/quarter/AP

• All reporting and analysis areas

• Trace usage to create/eliminate aggregates

• Total by month ½B I/Os versus 12 I/Os

Fact-Month

MQT

Fact-Daily

MQT

Fact-Week

MQT

Fact-1Q

MQT

Fact-Yearly

MQT

MQT – 10 to 1000 times improvement!

Y-T-D View

15DB2 Performance Blog at www.davebeulke.com

Database Conditions
• RUNSTATs – Sample your database 5%

• Table
• Page size Optimization – Do you have the correct DB2 Page Size?

• Column Cardinality
• Important Columns

• Index columns
• JOIN columns
• All columns used within any WHERE clauses

• Index
• Cardinality – Make sure to get detailed statistics
• INCLUDE Columns

16DB2 Performance Blog at www.davebeulke.com

Database Conditions
• How long does it take until your Index goes bad?

• You can collect distribution statistics when you collect inline
statistics when you run the following utilities:
• LOAD

• REORG TABLESPACE

• You can collect histogram statistics when you collect inline
statistics when you run the following utilities:
• LOAD

• REBUILD INDEX

• REORG INDEX

• REORG TABLESPACE

17DB2 Performance Blog at www.davebeulke.com

Database Conditions
• Identify your VOLATILE TABLEs

• Targeted for SAP Customers and the SAP Cluster Tables
• Favors using Index access whenever possible

• Avoids list prefetch
• Can be a problem for OR predicates or UPDATEs at risk of loop

• Optimize Page level options
• PAGE ROW Ratio needs to be optimized for storage and Update

frequency

• PCTFREE FOR UPDATE in DB2 11
• Help keep clustered longer, reduces the use of overflow records and indirect

references

18DB2 Performance Blog at www.davebeulke.com

Statement Level Hints Steps
1. Zparm required - Enable OPTHINTS

2. Populate DSN_USERQUERY_TABLE with SQL text
• From SYSPACKSTMT or Statement Cache

3. Populate PLAN_TABLE with corresponding hints
• Make sure to match QUERYNO in both tables -

DSN_USERQUERY_TABLE & PLAN_TABLE

4. BIND QUERY to put Hint into the repository
• Next dynamic prepare should use the Hint

• FREE QUERY to remove it

19DB2 Performance Blog at www.davebeulke.com

Database Design
• Use correct database column definitions

• So all the DB2 Online Analytic Processing-OLAP functions can be used

• Understand the new Stage 1 predicates processed
• value BETWEEN col1 AND col2

• value BETWEEN column-expression AND column-expression

• SUBSTR(COLX, 1, n) = value **NOTE only from first position**

• DATE(timestamp-column) = value

• YEAR(date-column) = value

• CASE WHEN THEN ELSE END = value

20DB2 Performance Blog at www.davebeulke.com

Steps to resolve SQL problems

1. Start with all EXPLAIN tables information
2. Research the database objects, Tables, Indexes
3. Research and understand the statistics

a. Understand where the problems are:

CPU, I/O, #-Sorts, #-tables, wrong indexes

4. Using all WHERE clauses possible – most restrictive first
5. How many times accessing the same table
6. Change the SQL table order? Sorts
7. Filter Factors, uneven data distribution, range predicates

a. Are Stats current, RTS Usage & Can you change the objects statistics to
improve?

8. Can you use Hints to improve the optimizer access path choice
9. Buy a IBM DB2 Analytic Accelerator - IDAA

21DB2 Performance Blog at www.davebeulke.com

Thank You!

Dave@ d a v e b e u l k e . c o m

Session: F19
Title: SQL Performance for a Big Data 22 Billion
row data warehouse

Please fill out your session

evaluation before leaving!

DB2 Performance Blog at www.davebeulke.com

